由于时间短促,今天文章笔者只探究泰勒公式的展开条件及余项形式,至于泰勒… 柏拉图在学高数 勒让德多项式与球谐函数 Young Quantum打开知乎App 在「我的页」右上角打开扫一扫 其他扫码方式:微信 下载知乎App 开通机构号 无障碍模式 验证码登录 密码登录 中国+86 获取短信验证码 获取语音验证码 登录/注册 其他方式登录...
本期物理课讲了勒让德多项式的级数展开,搜狐视频可查看完整版搜狐先知道 2022.01.25 18:29 分享到 热门视频 01:20 山东队2分输给浙江,球迷心里不是滋味!绝杀被反超令... 01:27 瓷砖地面防滑液的原理和成分是什么 01:43 宫外孕会头晕吗 00:52 成都油式模温机,免费现场或者远程安装指导 01:56 莲花...
勒让德多项式的编号是离散的,所以应该是广义傅里叶级数δ(x)=∑i=0∞aiPi(x)而不是积分吧?因为...
使用勒让德多项式来展开广义傅里叶级数是一种常见的方法,可以用来计算函数在某个区间上的数值积分。广义傅里叶级数可以表示为:f(x) = ∑_{n=-∞}^{∞} c_n T_n(x)其中,c_n是系数,T_n(x)是勒让德多项式,可以表示为:T_n(x) = cos(n * acos(x))首先,我们需要计算出c_n的...
另一点是勒让德并非周期性展开,这与傅立叶不同。正交分解有无穷多种,而且即使是同一种展开其表示法...
以勒让德多项式为基,在区间[-1,1]上把f(x)=2x3+3x+4展开成广义傅里叶级数。解:由于f(x)是三次多项式,应该表示为P(x),P1(x),P2(x),和P3
以勒让德多项式为基在[-1,1]上把f(x)=2x2+3x+4 展开为广义傅里叶级数相关知识点: 试题来源: 解析 首先,由于已经给定了次数而且很低,就不需要积分.Pl(x)中x最高次幂就是xl,P2(x)=0.5(3x2-1),P1(x)=x,P0(x)=1.于是f(x)=4/3P2(x)+3P1(x)+18/3P0(x)...
傅立叶-勒让德级数展开2) fourier series expansion 傅立叶级数展开 1. By using the Fourier series expansion, approximate analytical propagation equations of laser beams through a paraxial optical ABCD system with different apertures are derived. 用傅立叶级数展开法研究光束通过有光阑限制的近轴ABCD光学...
以勒让德多项式为基,在[-1,1]上把 f(x)=|x| 展开为广义傅里叶级数 答案 解本例的x =x_1=10≤x≤1;-x,(-1≤x≤0).(0≤x≤1)在区间[-1,0]和[0,1]上,f(x)的表达式不同,不能采用例1的解法,只有应用一般公式(10.1.18)fx=)fP()(10.1.20)f_1=(2l+1)/2[∫_(-1)^a(-η...
已知勒让德多项式系满足如下正交关系式:试将函数展开为傅里叶—勒让德级数。安徽大学2010—2011学年第一学期 相关知识点: 试题来源: 解析 解:当时,分别有:P_B(x)=1,,P_2(x)=1/2(2x^2-1), (3分)展开系数为: (2分) (2分)所以: (1分) ...