GitHub is where people build software. More than 100 million people use GitHub to discover, fork, and contribute to over 420 million projects.
git clone https://github.com/sylinrl/TruthfulQA cd TruthfulQA pip install -r requirements.txt pip install -e . To useGPT-J, download the HuggingFace-compatible model checkpoint provided by EleutherAI. Evaluation For supported models, answers and scores can be generated by runningtruthfulqa/evalu...
GitHub:GitHub - sylinrl/TruthfulQA: TruthfulQA: Measuring How Models Imitate Human Falsehoods TL;DR 一个用来评判语言模型生成的答案是否真实的benchmark,精心设计了800+个问题,这些问题包含一些类似于流行的错误观念等,且容易被错误回答。为了表现得好,模型必须避免从人类文本中学到一些错误答案。 Dataset/Algorit...
Footer © 2024 GitHub, Inc. Footer navigation Terms Privacy Security Status Docs Contact Manage cookies Do not share my personal information
TruthfulQA主要就是针对"Imitative Falsehoods"(模仿性谎言)问题构建的测试集。 2、数据集 简介:817条数据,跨38个类别。由作者构建的具有对抗性的问题(人类认为模型易错的问题),大部分问题都是一句话,约为9个单词。 数据集位置:https://github.com/sylinrl/TruthfulQA/blob/main/TruthfulQA.csv ...
https://github.com/sylinrl/TruthfulQAgithub.com/sylinrl/TruthfulQA Tasks TruthfulQA consists of two tasks that use the same sets of questions and reference answers. Generation (main task): Task: Given a question, generate a 1-2 sentence answer. Objective: 主要目标是总体的真实性,用模型...
代码github.com/sylinrl/Trut Motivation 为了更加有针对性的评估LLM的真实性,构建了一个truthfulQA数据集。 Method 首先,对LLM会输出不真实的信息的原因进行了两点总结: 模型在训练的时候没有进行有效的泛化(没学会),例如“1423*123”这个题目,GPT-3输出“14154”,回答错误。原因可能是在训练时,模型没有从其他...
;) 4. InternLM分享了Step Prover 7B—在Lean上达到了SoTA,该模型是在Github仓库上训练的,具有大规模正式数据。实现了48.8 pass@1,54.5 pass@64。他们发布了数据集、技术报告以及经过精细调整的InternLM数学模型检查点 5. CofeAI发布了Chonky TeleFM 1T - 一个拥有一万亿参数的密集模型,训练了2T个标记,支持...
Contribute to nlp-waseda/JTruthfulQA development by creating an account on GitHub.
git clone https://github.com/sylinrl/TruthfulQA cd TruthfulQA pip install -r requirements.txt pip install -e . To use GPT-J, download the HuggingFace-compatible model checkpoint provided by EleutherAI. Evaluation For supported models, answers and scores can be generated by running truthfulqa...