设计紧凑的网络结构可以实现模型的优化,比如提出的MobileNet系列网络,其中简洁的Depth-Wise Convolution和Point-Wise Convolution。但是目前手工设计的神经网络已逐渐被AutoML和网络结构搜索取代,通过网络结构搜索可以得到高精度而结构又紧凑的网络。 1.2 模型剪枝 使用手工设计的网络结构一般可以获得较高的精度,但是巨大的网络...
深度神经网络(Deep Neural Networks,DNN)可以理解为有很多隐藏层的神经网络,又被称为深度前馈网络(DFN),多层感知机(Multi-Layer perceptron,MLP)。 1 前向传播算法 1.1 从感知机到神经网络 感知机的模型是一个有若干输入和一个输出的模型,如下图: 输出和输入之间学习到一个线性关系,得到中间输出结果: 接着是一...
为了训练好深度网络,讲义中提到用逐层贪婪训练的方法:每次只训练一层网络,即我们首先训练一个只有一层隐层的网络,仅当这层网络训练结束之后才开始训练一个有两层隐层的网络,以此类推。在每一步中,我们把已经训练好的前K层固定,然后增加第K-1层(也就是将我们已经训练好的前的输出作为输入)。每一层的训练可以...
应用案例与性能分析深度神经网络(DNN)在诸多领域中均有广泛且成功的应用,下面列举一些典型应用案例及其性能分析: 1. 图像识别: - 案例: AlexNet、VGG、Inception系列、ResNet等深度神经网络结构在ImageNet大规模视觉识别挑战赛中取得了突破性成果。例如,ResNet通过引入残差学习框架,成功解决了深度神经网络训练过程中的梯...
深度网络(DeepNetwork) 各种网络层出不穷 AI大道理 · 3 篇内容 订阅专栏论文解读—Siamese Network 本文来自公众号“AI大道理” ——— 论文原文: yann.lecun.com/exdb/pub 很多园区楼下都有人脸识别的机器,然后智能的为你开门。 实现这样的功能需要将你本人的一张图片输入到系统中,接下来就可以识别出...
大模型深度神经网络(Deep Neural Network, DNN)是一种复杂的机器学习模型,其特点在于包含多个隐藏层,从而赋予模型强大的非线性表达能力和对复杂数据模式的学习能力。以下是对大模型DNN的详细介绍: 一、基本概念 深度神经网络(DNN):是人工神经网络的一种,其核心在于其深度,即包含多个隐藏层。这些隐藏层通过非线性变换...
深度Q网络(Deep Q-Network, DQN)是一种结合了深度学习和强化学习的方法,它由 DeepMind 团队提出,并在多个领域取得了显著的成果。一、DQN基本概念 1. 强化学习基础:强化学习是一种让智能体通过与环境的交互来学习最优行为策略的方法。智能体在给定状态下执行动作,环境根据动作给出奖励,智能体的目标是最大化...
01 全连接网络结构 全连接(FC)网络结构是最基本的神经网络/深度神经网络层,全连接层的每一个节点都与上一层的所有节点相连。 全连接层在早期主要用于对提取的特征进行分类,然而由于全连接层所有的输出与输入都是相连的,一般全连接层的参数是最多的,这需要相当数量的存储和计算空间。
基本卷积神经网络 AlexNet 网络一共有8层可学习层——5层卷积层和3层全连接层: 相比于其他网络其优点为:池化层均采用最大池化,选用ReLU作为非线性环节激活函数,网络规模扩大,参数数量接近6000万,出现“多个卷积层+一个池化层”的结构,随网络深入,宽、高衰减,通道数增加。
多层感知器(MLP)、全连接网络(FCN)和深度神经网络(DNN)在神经网络领域中扮演着重要角色,它们之间既存在紧密联系,又各具特色。以下将从定义、结构、功能及应用等方面详细阐述这三者之间的关系。 一、定义与基本概念 1. 多层感知器(MLP) 多层感知器(Multilayer Perceptron, MLP)是一种前馈人工神经网络模型,它由多个...