近年来,一种直观的信号表示方法--对称点模式(symmetric dot pattern, SDP)被用于信号分析和模式识别。与一些常规方法不同,SDP是一种基于极坐标系的图像表示方法,可以直接将原始信号转换为镜像对称雪花图像,实现简单,计算量小,且对噪声鲁棒。模式之间的识别和区分与信号之间的幅度和频率差异直接相关,对称点图(SDP)图像...
对称点模式(Symmetrized Dot Pattern,SDP)算法可将复杂时间序列以散点的形式清晰映射在极坐标图中,可以使原始时域信号通过图形化的方式提高可视化能力。因为极坐标图像的特殊性,多元、多通道、多传感器信号信息可通过SDP方法融合在有限区域中。适用于多元、多通道、多传感器信号的融合(获取链接)。 参考文献: 1.https:/...
与一些常规方法不同,SDP是一种基于极坐标系的图像表示方法,可以直接将原始信号转换为镜像对称雪花图像,实现简单,计算量小,且对噪声鲁棒。模式之间的识别和区分与信号之间的幅度和频率差异直接相关,对称点图(SDP)图像表示方法能够准确地表达信号的变化,在工业设备故障诊断、能源系统、水利,气象,交通时间序列分析中得到广...
近年来,一种直观的信号表示方法--对称点模式(symmetric dot pattern, SDP)被用于信号分析和模式识别。与一些常规方法不同,SDP是一种基于极坐标系的图像表示方法,可以直接将原始信号转换为镜像对称雪花图像,实现简单,计算量小,且对噪声鲁棒。模式之间的识别和区分与信号之间的幅度和频率差异直接相关,对称点图(SDP)图像...
数据转换 | Matlab基于R对称点模式(symmetric dot pattern, SDP)一维序列信号转二维时频图象 SDP常被用于信号分析和深度学习模式识别。 SDP是一种基于极坐标系的图像表示方法,可以直接将原始信号转换为镜像对称雪花图像,实现简单,计算量小,且对噪声鲁棒。模式之间的识别和区分与信号之间的幅度和频率差异直接相关。
对称点模式(Symmetrized Dot Pattern,SDP)算法可将复杂时间序列以散点的形式清晰映射在极坐标图中,可以使原始时域信号通过图形化的方式提高可视化能力。因为极坐标图像的特殊性,多元、多通道、多传感器信号信息可通过SDP方法融合在有限区域中。适用于多元、多通道、多传感器信号的融合(python代码获取链接)。
对称点模式(Symmetrized Dot Pattern,SDP)算法可将复杂时间序列以散点的形式清晰映射在极坐标图中,可以使原始时域信号通过图形化的方式提高可视化能力。因为极坐标图像的特殊性,多元、多通道、多传感器信号信息可通过SDP方法融合在有限区域中。适用于多元、多通道、多传感器信号的融合(获取链接)。